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Abstract. It is known that while the spin-1 (Proca) theory with minimal electromagnetic 
interaction is marred by the Corben-Schwinger anomaly, the inclusion of specific types of 
‘anomalous’ interactions leads to other difficulties such as non-causality of propagation, and 
the energy spectrum (in homogeneous magnetic fields of sufficient strength) becoming 
partially non-real. In this paper we investigate whether, by making the anomalous terms 
(introduced into the Duffin-Kemmer-Petiau equation) sufficiently general, it is possible to 
escape both these inconsistencies. The answer, unfortunately, turns out to be in the 
negative. We comment briefly on other formulations for spin-1. 

1. Introduction 

Investigations of relativistic wave equations for spin >; in recent years have revealed a 
variety of anomalies arising when interactions with external fields are introduced (Velo 
and Zwanziger 1969a, 1969b; Wightman 1971, 1973; other references may be traced 
from Mathews et a1 1976). The classic work of Johnson and Sudarshan (1961) on the 
quantisation of spin-; fields minimally coupled to external electromagnetic fields was 
the first to bring to light serious inconsistencies. It has since been discovered that even 
at the level of c-number fields one or other of several types of problem may arise: 
non-causal propagation, revealed in Velo and Zwanziger’s (1969a) study of spin $fields 
coupled to external electromagnetic fields; complex values of energy eigenvalues, 
found by Tsai etal  (Tsai and Yildiz 1971, Goldman etal  1971, Tsai 1971) in their study 
of spin-1 particles with non-minimal electromagnetic interaction and investigated 
extensively by Mathews and collaborators (Mathew 1974, Seetharaman et a1 1975, 
Prabhakaran 1975, Mathews et a1 1976) and changes in the number of degrees of 
freedom of the field considered (Federbush 1961, Vel0 and Zwanziger 1969b). These 
discoveries have led to investigations on a number of wave equations for spins 1, f and 2, 
with a variety of specific interactions with a view of determining to what extent they are 
free of (one or more of) the above difficulties (Schroer et a1 1970, Minkowski and Seiler 
1971, Vel0 1972, Shamaly and Capri 1972, Jenkins 1972, Hagen 1972, Singh 1973, 
Capri and Shamaly 1976). 

Surprisingly, however, there has been no attempt, even in the relatively simple case 
of spin-1 particles interacting with external electromagnetic fields, to find out whether 
all the above types of inconsistency can be overcome by making the interaction 
sufficiently general?. The need for such a study in the context of spin-1 theories is all the 

t Shamaly and Capri 1972 gives an analysis of the Rarita-Schwinger equation with general non-minimal 
terms. 
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greater because the pattern of results obtained so far is somewhat confusing. For 
example, the equations employing antisymmetric tensor wavefunctions (Shay and 
Good 1969, Takahashi and Palmer 1970) lead to complex energy modes for charged 
spin-1 particles in homogeneous magnetic fields (HMF) if the interaction is such as to 
correspond to a g-factor different from unity, the ‘normal’ value (Prabhakaran et a1 
1975). The same is true of the familiar Proca equation. However, while the former are 
causal only for this same coupling (g = 1) (Prabhakaran and Seetharaman 1973), the 
latter remains causal even if an anomalous magnetic moment of arbitrary strength is 
added, Apart from the resolution of such apparent discrepancies, one needs to know 
whether there is any combination of the various possible non-minimal interactions 
which would make the spin-1 theory both causal and free of complex energy modes in 
HMF. (The possibility of interactions causing changes in the number of degrees of 
freedom does not arise in the spin-1 case). 

For the purpose of our study, the Duffin-Kemmer-Petiau (DKP) equation (Duffin 
1936, Kemmer 1939, Petiau 1938)-the wavefunction in which is made up of a four 
vector and an antisymmetric tensor-is most convenient. Since it is a first order 
equation there is no ambiguity in the introduction of the minimal interaction through 
the usual replacement p, + .rr, = p ,  - eA,. (This is to be contrasted with second order 
equations, say of Takahashi and Palmer, wherein one can replace p,p,,+.rr,.rr, or 
a.rr,.rr,, + (1 - u).rrv.rr,). To introduce anomalous terms, one has to construct all possible 
tensors out of the Duffin-Kemmer p-matrices and couple them suitably to similar 
tensors constructed out of the electromagnetic field. The set of all possible tensors and 
their parity properties have been classified in a systematic way by Glass (1971) and 
hence the construction of a very general anomalous term is straightforward. We shall 
study the question of causality of propagation of the wavefunction satisfying the DKP 
equation including such a general interaction term, and also solve the equation 
explicitly in the case that the external field is a constant HMF, to determine the nature of 
the energy spectrum. 

The plan of the paper is as follows: In the next section we briefly review the DKP 
equation for spin-1 and Glass’s classification of the tensors associated with the theory, 
With the help of a convenient representation of the p, (also given in 9 2) we solve in 9 3 
the resulting generalised DKP equation, in the special case when the external field is a 
constant HMF. The conditions for the energy spectrum to be wholly real (irrespective of 
the strength of the magnetic field) are obtained. The problem of causality is investi- 
gated in Q 4, and the conditions for propagation to be causal are derived. The structure 
of the interaction terms in the causal theory when reduced to the Proca and the 
Shay-Good forms is discussed in 0 5. The final section provides a discussion of the 
results obtained. 

2. DKP equation for spin-1 and the algebra of p-matrices 

The matrices P, in the DKP equation 

(P,& + m)* = 0 

obey the relation 

P,P”PP + P P P U P ,  = P,S”, + PPS”, (2) 
and 11, is a ten component wavefunction which transforms according to the reducible 
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representation D(O, l )@D( l ,  O)@D(t, 4) of the Lorentz group. It is well known that 
equation (2) leads to a finite matrix algebra having 126 linearly independent elements 
and three irreducible representations of dimension 10, 5 and 1, and that the 10- 
dimensional and 5-dimensional representations, when used in equation ( l ) ,  provide 
characterisations of particles of spin-1 and 0 respectively. Glass (1971) has recently 
constructed a basis for the algebra in terms of tensors constructed from the P,. In this 
basis, the 100 elements pertinent to the 10-dimensional (spin-1) representation appear 
as components of 15 irreducible tensors. They are displayed in table 1, wherein we have 
used the following definitions: 

(In the above the convention of summation over repeated indices is assumed). We use 
these tensors now to generalise the DKP equation to include all possible non-minimal as 
well as minimal electromagnetic interaction of the spin-1 particle. 

Table 1. Hermitian tensor basis for PDK spin 1 theory 

Representation of the Independent Hermitian No. of 
Lorentz group tensors elements 

D y . O ’  (Scalar) 
(Pseudo scalar) D9.0’ 

D(1 /2 ,1 /2 ’  + (Vector) 
D1‘/2.’/2’ (Pseudo vector) 

D?” (Symmetric traceless pseudo tensor) 

D(1.11 + (Symmetric traceless tensor) 

(antisymmetric tensor) D‘l.o’ @D(O.ll 

~ ‘ 3 / 2 . 1 / 2 ’  @ 0 ‘ 1 / 2 . 3 / 2 1  

D‘2.0’@D(0.2) 

3. Coupling to an external electromagnetic field 

Taking into account possible anomalous couplings to the external field in addition to the 
minimal coupling (effected by the usual replacement a, + 8, - ieA,) we can write the 
equation of motion in the form 

with T, = - i 8, - eA,. Here R ( x )  represents the anomalous couplings which, for 
reasons of gauge invariance, can depend on the A, only through F,,, =a,Au -a&,. 
R ( x )  can be expanded in terms of the tensors referred to in the last section, the 
coefficients in the expansions being functions of Fuu. It can be verified that in view of the 
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antisymmetry of F,,, the most general form of R is 

R = (ie/2m)(glu,, + gJB,  U,~I)F~, 
+ (e2/2m3)[g3(Bwu -$S, ,B)  + g4(U3, B,vI-S,,B’)IFwmFau 

+ (e2/2m3)g, YwuaflGJap + (e2/2m3)gdEaBFpa. ( 5 )  

In the above we have assumed that the interaction is parity conserving and that there are 
no derivative couplings?. Factors of m have been included explicitly along with the 
coupling parameters gl  . . . for dimensional reasons. The parameters themselves may 
be constants or functions of invariants constructed from FfiU. (For convenience of 
reference we shall talk of the first two terms in (5)-involving gl and gz-as terms linear 
in Fwy and the others as quadratic terms, though such a description is clearly valid only if 
the g’s themselves are merely constants). In the rest of the paper we shall be concerned 
with equation (4) with R given by equation ( 5 ) .  

For explicit calculations, we shall employ the following representation of the 
@-matrices (Seetharaman et a1 1970): 

0 0 0 -e i  0 0 - i o  

.,=[ ;+ ;] -? ;] @.=[; ; ; ;] (6 )  

-e1 0 0  0 0  

Here the l o x  10 matrices are written in partitioned form, with the ten rows (and 
columns) grouped into 3 + 3  + 3  + 1. The b j ( j  = 1 ,2 ,3 )  are the spin-1 matrices with 
elements 

(bl)ki = - iejki (7a)  

(ej)k = & (76) 

and the e, are 3 x 1 matrices with 

The ten component wavefunction + will also be partitioned conformably into parts 

4. Solutions in a homogeneous magnetic field 

We shall now obtain solutions of equation (4) with R given by (3, in the case when 
A, corresponds to an external magnetic field (homogeneous and static) in the z 
direction, so that 

(9) Flz = - F 2 1 =  % 

i Parity conserving interaction terms can be constructed from the pseudoscalar r and the pseudo symmetric 
tensor S,, by coupling them to expressions involving the dual tensor F,. = (i/2)cuvxAFxA. However such 
terms necessarily contain the factor FU,.FFp which vanishes in the two special cases of interest, viz pure electric 
and pure magnetic fields. Hence the addition of such terms does not alter the results of the analysis to be 
presented below. 
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and all other components of F,, vanish. In this special case, R of equation ( 5 )  has the 
simple form 

m (1 + a 1 t 2  + (Y2td3 + (~36~432)1(/1+ ~ 4 4 3  - ie . n44 = o 
m (1 + p1t2 + ~ 2 6 4 3  + p 3 t 2 6 ) ~ 2  + s. .c~43 = 0 

- T 4 ~ 1  - s. m+2 + m(1 + u1t2 + g2663  + ( ~ 3 5 ~ 4 4 3  = o 
- ie t  . +m(l+u, t2)*4  = 0. 

(13) 

To solve these equations we apply the method employed in our earlier papers. 
(Mathews 1974, Prabhakaran et a1 1975). It rests on the observation that with the 
electromagnetic field specified as above, the operators 

a = (2e%)-”2~+  and a+ = (2e%)-1’2~- (14a) 

(T* = r1 f iT2) obey the commutation relations of the ladder operators of the harmonic 
oscillator 

[a, a+] = 1. (14b) 
Of course, a and a +  commute with the spin operator d and also, in the present case, with 
7r3. To take advantage of this fact we define a basis consisting of simultaneous 

t Since then are only six g,’s, there must exist three relations among the nine coefficients defined in (12). 
These areeasilyseen to be a 2 = p 2 .  a l + a 3 = p l + p 3 a n d 3 ( a l + p l ) + 2 ( a 3 + p 3 ) = 4 ~ l + 2 u 3 .  
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eigenstatesi In, p )  of the number operator N u+u and the third component s3 of spin: 

osln, p ) = p l n ,  CL). 

We expand the in terms of these basis states. Further, as we are interested in 
stationary states with time-dependence e-iEr, we replace r4 =p4 in (13) by iE. A close 
look at equation (13) then reveals that the i,bi have the following structure: 

The coefficients ci, di and fi here are parameters which are as yet undetermined. (The 
notation suppresses their n-dependence.) For example, with n = 0 one has 

Substitution of the forms (16) in equation (13) followed by the use of (15) leads to a set 
of linear equations in the c,, di and f i  when the coefficients of the linearly independent 
states on the LHS are equated to zero. Equations (16) give solutions also for n = 0 and 
n = - 1 but with the understanding that one must drop those terms in which a negative 
number appears in the place of the eigenvalue of N. The calculations are straightfor- 
ward though laborious. The form of the equations can be simplified somewhat by 
introducing the definitions 

t In what follows we consider only the case where the eigenvalue of 7-r3 = 0. Generalisation to non-zero 
eigenvalues of 7-r3 is straightforward and presents only non-essential complications. 
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Equations (19) show that c1 and f l  can have non-zero values only if 

E2=(1+Ly1~’){1+[U1+Sz+(~1+S3)(2n +1)e]r2}. (22) 

Similarly, equations (20) will have non-zero solutions, provided E is such as to satisfy the 
following quadratic equation in c 2 :  

(23) 4 2  
E - P E  + q = o  

where 

p = U + ( Y + + U - ~ - + S ~ ~ ~ [ ( ~  + l ) a + + n a - ] + ~ 5 [ ( n  + l ) ( + + + n ( + - ] + ~ ~ ~ 5 ~  ( 2 4 ~ )  

and 

4 = {(++U- 81e2[(n + 1)U- + n(++]}{LY+(Y- + K c [ ( n  1)a- f na+]}. (24b) 

The following notation has been used in the above for ease of writing: 

Equations (22) and (23) determine the conditions to be satisfied in order that all 
solutions for the parameter E be real, i.e. E *  = E 2 / m 2  > 0. Since reality is required for 
all values of n and 5, one can readily obtain a number of necessary conditions by 
considering the limits of very large 5, very large or small n etc, and make use of them in 
analysing further the case of general n and 5. One finds in this manner that the 
necessary and sufficient conditions for reality of E for all n and 5 are: 

To see what these conditions imply, we refer back to the definitions (12) of the 
quantities appearingin (26). On inspection one sees that equations (26a) can be readily 
satisfied. Equations (26b) however have an important consequence. They cannot be 
satisfied if the coefficients gl, gz of the linear terms in ( 5 )  alone are non-zero. Hence, if 
the interaction involves linear terms in F,, it must also contain quadratic terms if the 
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energy spectrum is to be completely real. We shall see at the end of the next section that 
this result makes it impossible to have any non-minimal interaction consistent with 
causality and reality of the energy values E. 

5. Propagation of DKP waves in an external electromagnetic field 

To investigate the question of causality of propagation, we shall adopt the familiar 
method of characteristics (Courant and Hilbert 1962). This method rests on the fact 
that the characteristic surface of a set of hyperbolic partial differential equations is 
determined by the coefficients of the highest derivative terms in the equations. If the 
normal n, to any characteristic surface happens to be time like, then the wave 
propagation is acausal. The normals n, are the roots of D ( n )  = 0 where D ( n )  is the 
characteristic determinant, viz the determinant of the coefficient matrix obtained by 
replacing a, by n, in the highest derivative terms in the true equation of motion. 

The equation of motion which we are concerned with is the Kemmer equation (with 
non-minimal interaction), 

[ i p 4 ~ 4 + i p .  n + m + R ( x ) ] $  = 0 (27) 

where R ( x )  is given by equation (5). Since p4 is singular (p: = p4) the above equation 
implies constraints. Projecting to the zero eigenvalue subspace of 84 with Po = (1 - B:), 
we get the constraint relation, 

(1 - p:)(ip. m + m +RI$ = 0 

which on using (1 -p:)pl  =PIP: ,  can be rewritten as 

Lip. np j  + (1 - ~ : ) ( m  + R I ] $  = o 
i.e. 

[ip. npj+11-p42)~p34+[m + ( ~ - ~ , Z ) R I ( I - P ~ ~  =o.  (28) 

This equation expresses (1 -pz)$ in terms of the independent components pi$.  
Combining this equation with equation (27) we obtain, after straightforward manipula- 
tion, the true equation of motion, 

( [ l + m - ' ( l - p ~ ) R ] ~ ~ + P ~ P .  n - 0 .  np4-m- 'P .  np4R 

-ip4(m +R) -m- ' ( l  -pz)aR/at+m- ' ip ,  E@:}$ = O .  (29) 

Equation (29) together with the constraint, equation (28), is equivalent to the equation 
of motion (27). 

Replacing T, by n,  in the first order derivative terms in (29) we obtain the 
characteristic determinant to be 

~ ( n )  = 11{[1+ m - ' ( ~  - P : ) R I ~ ~  + p4p. n - 0. np4 - m - ' ~ .  n p 4 ~ } / / .  (30) 

To evaluate (30), let us specialise to the frame in which n ,  = (0, 0, 0, n4): In  this case 
D(n)  simplifies to 

D(n4) = n i O ) l l  +m- ' ( l  - p i ) ~ l / .  (31) 
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Substitution of the form of R from ( 5 )  and a straightforward evaluation of the 
determinant leads to 

~ ( n 4 )  = n : ’ ~ l ( n 4 ) ~ 2 ( n 4 )  (32)  
with 

and 

In the above equation 

The covariant form of the characteristic determinant for the case of arbitrary n, is easily 
seen to be obtained through the replacements 

+--$p3x n2 2 +&)(F’. n)2-a3x2(F.  n ) 2 ] + 7 ( F .  P k 3  A n) ’ (%. 
m 

where we have defined 

E ,” = 1. 2 1 E w ” p a F p u ;  

(F. n)’ = (P. n ) , ( F .  n ) ,  = Fw,FwpnVnp etc. (37)  

D ( n )  = (38)  

9 , ( n )  = 0 

9 2 ( n )  = 0.  

F. F = 3,& 
A A  

Thus the form of the characteristic determinant for arbitrary n, is given by 

The normals to the characteristic surfaces (other than the light cone) are solutions of 

and 

We shall obtain the solutions of (39)  for the following special cases 
( a )  F,j # 0,  Fi4 = 0 (pure magnetic field) 
(6) F,4 # 0 ,  Fij = 0 (pure electric field). 

(39)  
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( a )  Pure magneticfield: For simplicity let us take the form of nw to be ( n l ,  0, 0, n4), 
and take the magnetic field to be along the z direction. It is easily seen that the solutions 
of (39) are given by 

--- n f  1 + m - ~ ( a ~ + a 3 ) ~ ’  
n:- l+m-4u1H2 

_-- n f  1 + m-4(pl + p 3 ) ~ *  
n:-  l+m-4p1H2 

and 

From the above equations it may be easily verified that the waves propagate causally, 
provided 

Q 1 ,  ai, pi,  (ai + C3), (pi + p3) 2 0 

p 3 , a 3 s O  and (a l+a3 )s&~ : .  (41) 
One can check that there exist overlapping regions between the conditions (40) for 
causality and the conditions (26) for real eigenvalues in a HMF. 

(b) Pure electric f ield: Let us choose the electric field to be along the z direction and 
as before consider the special frame in which nL1 = ( n l ,  0 ,  0 ,  n4). For this case the 
solutions for n f  are again easily calculated. 

2 

2 -  

2 

2 -  

n4 - 1-m-4alE2 
n 1 - tC4(al + a3)E2 

n4 1-m-4plE2  
n l  1 -m-4(pl + p 3 ) P  

--- 

and 
n i  [ 1 - m - 4 ( a l + ~ 3 ) E 2 ] 2 + m - 4 ~ ~ E 2  __-- n: - [ 1 - m -4 (al + a3)E2][1 - m - 4 ~ ~ E 2 ] ’  

One can verify that causal propagation in this case demands that 

Q i ,  ai, P i ,  (ai+a3), ( P i + P 3 ) s o  

P3, a 3 2 0  

and 

( 0 1  + (Y3) iQi. 

(43) 

The conditions (41) and (43) for causal propagation in a pure magnetic and a pure 
electric field respectively are mutually compatible only if the equality sign is taken in all 
cases. Thus, propagation in both pure magnetic and pure electric fields is caused only if 

i44a 1 a1 =p1  =p3 = (+I = (T3 = 0 

and 
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Equations (44a), translated to the original coupling constants, immediately show that 

(45) g3 = g4 = g5 = g6 = 0. 

That is, causality demands that all the quadratic terms in the anomalous coupling term 
should go. From (44b), we find that gl +4g2 = 0: i.e., 

gl = -4g2. 

One can verify from (35) and (37), for completeness, that with the conditions (44) and 
(46), causality of propagation is retained for arbitrary electromagnetic fields F,,,. 

6. The Proca and Shay-Good forms 

For the above choice of the anomalous coupling (equations (45) and (46)) the equations 
of motion for 4, take the form ( K  = 2g2): 

- m41 = v443 - ie . m,h4 

- mll/2 = 3.  m43 

~ 4 4 1  + d .  n4z- m43 +-o. Hi,h3+-e. 

ieK + 
ie’. n 4 1 - m ~ 4 + - e  . E ~ ~ = o .  

m 

(47) 
e K  ieK 
m m 

= 0 

The first two equations can be taken to define ljll and 4b2 in terms of 43 and (L4. On 
eliminating these from the last two equations, we get 

[T:+ m + ( d .  n)’-eKd. H]+3 -i[v4e. n + e ~ e .  El44 = 0 2 

i[et. n r 4 - e ~ e t .  E]i,b3+[et. ne .  m+m2]t,b4=0. (48) 

With the identification of the 3-components of 43 with a vector V and 1 4 ~  with - i V4, we 
can rewrite the above equations in the vector form 

v, (vF v, - v,,v,) + m2 v, + ieKF,, v, = 0 (49) 

which is just the Proca equation with an anomalous dipole term. Our results verify that 
the Proca equation with this coupling is indeed causal irrespective of the strength. 

More interesting is the generalised Shay-Good form obtained by eliminating 43 and 
tL4 from the equations of motion (47) and writing them solely in terms of and (L2, 
which together constitute an antisymmetric tensor. One has 

or, in tensor language, (qh = - iG,4, tL2 = $eiikG,k) 

2 eK 
m m G,, = v, ( 1 + i- F ;: rPGap - ( p  - v ) , 
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(Here F is a 4 x 4 antisymmetric matrix with elements F,,). It is not difficult to evaluate 
the inverse. We find 

(1 + S F ) - ’  ,U 

where fi,, is the tensor dual to F,, (equation 37). It is clear that the inverse matrix 
brings in terms which are explicitly non-linear in the F&,, (with coefficients which 
themselves depend in non-polynomial fashion on invariants constructed from the FCIY). 
Further, the action of T ,  on this matrix introduces a dependence of the interaction on 
derivatives of the F,,, i.e. quadrupole interaction. 

This observation enables us to explain a result which had remained puzzling, namely 
that in the Shay-Good theory with non-minimal electromagnetic interaction intro- 
duced through a Pauli type term, causality is possible only if the strength of the 
non-minimal term is so chosen as to make the g-factor equal to unity, while in the Proca 
theory with similar non-minimal interaction, causality persists whatever be the 
anomalous magnetic moment. We see now that the latter, translated into the Shay- 
Good language has interaction terms which are explicitly non-linear in the F,, and have 
strengths which are themselves field dependent. What is more pertinent, the structure 
of the non-minimal interaction term in (51), namely 

T,( [ 1 + S F ] - ’  - l)n,G,, 

is quite different from the form (ie/2)(1+ K)(FA,G,A -F,,AGA,) assumed by Shay and 
Good: it is not the G,, which occur in the former, but their second derivatives T,T,G~,,  
What we learn is that to preserve causality for arbitrary values of the magnetic moment, 
the non-minimal interaction has to be introduced into the Shay-Good equation through 
the T , T ~ G ~ ,  term in the manner of equation (5 l), and not through the ‘natural’ looking 
term actually used by Shay and Good. 

7. Results and discussion 

We see from equations (45) and (46) that only terms linear in FWy are permissible in the 
DKP equation if causality of propagation is to be ensured. It is interesting to note that 
the ‘Pauli term’ u,,,F,,, taken by itself leads to violation of causality; an appropriate 
admixture of this term with {B, ~ , y } F w y  has to be taken to eliminate this trouble. This 
result brings out clearly the fact that the ‘natural’ appearance of some interaction terms 
(such as the Pauli term) is by no means sufficient to ensure satisfactory results, and 
emphasises the need for the investigation of interactions in all generality. Furthermore, 
the degree of generality needed may be well beyond what one might ordinarily think of, 
as is strikingly illustrated by the example of the equation in Shay-Good form. 

As regards the reality of the energy spectrum in the presence of a homogeneous 
magnetic field, we have found in P 4 that if non-minimal interaction terms linear in the 
FSy are present, then the spectrum can be wholly real only if other terms quadratic in the 
F,, are also present with sufficient strength. Combining this with the condition for 
causality, noted above, we conclude that causality and the reality of eigenvalues can 
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both be obtained only if the coupling is restricted to be minimal. (This corresponds to 
the g-factor being unity). However, it has long been known that the minimal coupling 
has its own pathology: Corben and Schwinger (1940) showed that with minimal 
coupling a complete set of wavefunctions having acceptable behaviour does not exist for 
a spin-one particle in a Coulomb field. 

The present investigation is the first, as far as the authors are aware, to consider the 
direct interactions of the DKP particle and to study the problem of the energy spectrum, 
besides the causality problem, in this general context. It encompasses all earlier studies 
with specific anomalous terms. It is disconcerting to find that despite the generality a 
completely consistent possibility has not emerged. 
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